What Is Spacetime Really Made Of?

What Is Spacetime Really Made Of?

Spacetime may emerge from a more fundamental reality. Figuring out how could unlock the most urgent goal in physics—a quantum theory of gravity

“The fact that the ancient Greeks asked things like, ‘What is space?’ ‘What is time?’ ‘What is change?’ and that we still ask versions of these questions today means that they were the right questions to ask,” Wüthrich says. “It’s by thinking about these kinds of questions that we have learned a lot about physics.”

Natalie Paquette spends her time thinking about how to grow an extra dimension. Start with little circles, scattered across every point in space and time—a curlicue dimension, looped back onto itself. Then shrink those circles down, smaller and smaller, tightening the loop, until a curious transformation occurs: the dimension stops seeming tiny and instead becomes enormous, like when you realize something that looks small and nearby is actually huge and distant. “We’re shrinking a spatial direction,” Paquette says. “But when we try to shrink it past a certain point, a new, large spatial direction emerges instead.”

Paquette, a theoretical physicist at the University of Washington, is not alone in thinking about this strange kind of dimensional transmutation. A growing number of physicists, working in different areas of the discipline with different approaches, are increasingly converging on a profound idea: space—and perhaps even time—is not fundamental. Instead space and time may be emergent: they could arise from the structure and behavior of more basic components of nature. At the deepest level of reality, questions like “Where?” and “When?” simply may not have answers at all. “We have a lot of hints from physics that spacetime as we understand it isn’t the fundamental thing,” Paquette says.

These radical notions come from the latest twists in the century-long hunt for a theory of quantum gravity. Physicists’ best theory of gravity is general relativity, Albert Einstein’s famous conception of how matter warps space and time. Their best theory of everything else is quantum physics, which is astonishingly accurate when it comes to the properties of matter, energy and subatomic particles. Both theories have easily passed all the tests physicists have been able to devise for the past century. Put them together, one might think, and you would have a “Theory of Everything.”

But the two theories don’t play nicely. Ask general relativity what happens in the context of quantum physics, and you’ll get contradictory answers, with untamed infinities [divergences] breaking loose across your calculations. Nature knows how to apply gravity in quantum contexts—it happened in the first moments of the big bang, and it still happens in the hearts of black holes—but we humans are still struggling to understand how the trick is done. Part of the problem lies in the ways the two theories deal with space and time. While quantum physics treats space and time as immutable, general relativity warps them for breakfast.

Somehow a theory of quantum gravity would need to reconcile these ideas about space and time. One way to do that would be to eliminate the problem at its source, spacetime itself, by making space and time emerge from something more fundamental. In recent years several different lines of inquiry have all suggested that, at the deepest level of reality, space and time do not exist in the same way that they do in our everyday world. Over the past decade these ideas have radically changed how physicists think about black holes. Now researchers are using these concepts to elucidate the workings of something even more exotic: wormholes—hypothetical tunnel-like connections between distant points in spacetime. These successes have kept alive the hope of an even deeper breakthrough. If spacetime is emergent, then figuring out where it comes from—and how it could arise from anything else—may just be the missing key that finally unlocks the door to a theory of everything.

The World in a String Duet

Today the most popular candidate theory of quantum gravity among physicists is string theory. According to this idea, its eponymous strings are the fundamental constituents of matter and energy, giving rise to the myriad fundamental subatomic particles seen at particle accelerators around the world. They are even responsible for gravity—a hypothetical particle that carries the gravitational force, a “graviton,” is an inevitable consequence of the theory.

But string theory is difficult to understand—it lives in mathematical territory that has taken physicists and mathematicians decades to explore. Much of the theory’s structure is still uncharted, expeditions still planned and maps left to be made. Within this new realm, the main technique for navigation is through mathematical dualities—correspondences between one kind of system and another.

One example is the duality from the beginning of this article, between tiny dimensions and big ones. Try to cram a dimension down into a little space, and string theory tells you that you will end up with something mathematically identical to a world where that dimension is huge instead. The two situations are the same, according to string theory—you can go back and forth from one to the other freely and use techniques from one situation to understand how the other one works. “If you carefully keep track of the fundamental building blocks of the theory,” Paquette says, “you can naturally find sometimes that ... you might grow a new spatial dimension.”

A similar duality suggests to many string theorists that space itself is emergent. The idea began in 1997, when Juan Maldacena, a physicist at the Institute for Advanced Study, uncovered a duality between a kind of well-understood quantum theory known as a conformal field theory (CFT) and a special kind of spacetime from general relativity known as anti–de Sitter space (AdS). The two seem to be wildly different theories—the CFT has no gravity in it whatsoever, and the AdS space has all of Einstein’s theory of gravity thrown in. Yet the same mathematics can describe both worlds. When it was discovered, this AdS/CFT correspondence provided a tangible mathematical link between a quantum theory and a full universe with gravity in it.

Curiously, the AdS space in the AdS/CFT correspondence had one more dimension in it than the quantum CFT had. But physicists relished this mismatch because it was a fully worked-out example of another kind of correspondence conceived a few years earlier, from physicists Gerard ’t Hooft of Utrecht University in the Netherlands and Leonard Susskind of Stanford University, known as the holographic principle. Based on some of the peculiar characteristics of black holes, ’t Hooft and Susskind suspected that the properties of a region of space might be fully “encoded” by its boundary. In other words, the two-dimensional surface of a black hole would contain all the information needed to know what was in its three-dimensional interior—like a hologram. “I think a lot of people thought we were nuts,” Susskind says. “Two good physicists gone bad.”

Similarly, in the AdS/CFT correspondence, the four-dimensional CFT encodes everything about the five-dimensional AdS space it is associated with. In this system, the entire region of spacetime is built out of interactions between the components of the quantum system in the conformal field theory. Maldacena likens this process to reading a novel. “If you are telling a story in a book, there are the characters in the book that are doing something,” he says. “But all there is is a line of text, right? What the characters are doing is inferred from this line of text. The characters in the book would be like the bulk [AdS] theory. And the line of text is the [CFT].”

But where does the space in the AdS space come from? If this space is emergent, what is it emerging from? The answer is a special and strangely quantum kind of interaction in the CFT: entanglement, a long-distance connection between objects, instantaneously correlating their behavior in statistically improbable ways. Entanglement famously troubled Einstein, who called it “spooky action at a distance.”

End of Part-1